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Teaser Here, we describe a multicriteria virtual screening approach based on desirability
functions and tailored ensemble machine-learning classifiers.
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The therapeutic effects of drugs are well known to result from their

interaction with multiple intracellular targets. Accordingly, the pharma

industry is currently moving from a reductionist approach based on a ‘one-

target fixation’ to a holistic multitarget approach. However, many drug

discovery practices are still procedural abstractions resulting from the

attempt to understand and address the action of biologically active

compounds while preventing adverse effects. Here, we discuss how drug

discovery can benefit from the principles of evolutionary biology and

report two real-life case studies. We do so by focusing on the desirability

principle, and its many features and applications, such as machine

learning-based multicriteria virtual screening.

Introduction
For years, the drug discovery pipeline has been outlined by a well-established series of rationally

connected steps aimed at (i) defining a biological target; (ii) screening large collections of

compounds to identify hits; (iii) hit-to-lead generation implying chemical modifications; (iv)
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lead optimization for developing drug candidates; and (v) per-

forming preclinical trials validating a new potential drug, among

others. The success rate along the drug discovery pipeline depends

on the chance of crossing filters that are used to discard com-

pounds whose features do not match those typical of drugs [1].

However, approaching drug discovery in such an ‘inverted cone-

shaped’ fashion constitutes a simplified procedural abstraction

often detached from the intimate nature of drug biology encom-

passing the occurrence of simultaneous and multilevel complex

interactions, that is, the mode of action of the drug.

It is now widely accepted that drugs are inherently poly-phar-

macological because they can act on multiple targets or disease

pathways [2]. Even drugs with relatively high target specificity are

known to engage a multitude of proteins via a structured network

of hydrogen, hydrophobic, and ionic interactions, thus inducing

their 3D structures and modulating their functioning [3]. In this

complex scenario, we should reconsider the way we search for new

drugs and move beyond the reductionist ‘one-target fixation’

paradigm [4].

To bridge drug discovery and biology, we should first acknowl-

edge the multifaceted nature of drugs and then readdress the drug

discovery approach [5]. Instead of analyzing thousands of candi-

date compounds by using sequential filters, each accounting for

one property at a time, we should attempt to optimize more

properties simultaneously. Such an approach would also be more

akin to that which occurs in nature. In fact, most known natural

drugs are likely to have been molded by the process of evolution

indirectly via the enzymatic systems responsible for their synthesis

[6], thus optimizing all the possible ‘facets’ to balance their on/off-

target profile [7,8].

Thus, we suggest that the concept of evolution should be

applied to drug discovery. The process of drug discovery can be

directly paralleled to that of evolution, whose success depends on

natural selection, among other driving forces. In nature, evolu-

tionary improvement occurs via the continuous selection of well-

established features enabling organisms to adapt, survive, and

reproduce. In drug discovery, scientists are committed to adjusting

several physicochemical and biological properties in the search for

drugs. However, potent ligands against a therapeutic target are

abandoned along the drug discovery pathway [1] if they do not
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FIGURE 1

From flamingo mating rituals to drug discovery.

1490 www.drugdiscoverytoday.com
show an acceptable spectrum of physicochemical, absorption,

distribution, metabolism, and elimination (ADME) properties

along with a minimal risk of toxic effects.

The parallelism between this new way of approaching drug

discovery and the courtship rituals of the flamingo is exemplified

in Fig. 1. When flamingos are approximately 6 years of age, they

are ready to start mating. To find a partner, flamingos engage in a

variety of courtship rituals, mostly initiated by the males. If these

are impressive enough, the female will likely pair up. By studying

hundreds of mating couples, it was realized that females judge

dancing males by several key factors: color intensity of the feath-

ers; movement coordination; height of the neck; and curvature of

the beak. Similar to an experienced chemist looking for an appro-

priate drug candidate, a female flamingo will choose the partner

that has the most suitable features for mating [9,10].

Therefore, we argue that evolution and drug discovery are both

meaningful examples of an optimization process. Thus, if we

wanted to approach drug discovery by mimicking evolution,

which strategy should we use? We suggest that multicriteria

optimization (MCO) methods are well suited to guide the simul-

taneous optimization of multiple factors. Many recent develop-

ments have focused on methods to aid the simultaneous

optimization of multiple factors required in a successful drug,

targeting compounds with the highest chance of downstream

success early during the discovery process [1]. However, formalized

MCO approaches are not widely used in drug design [11]. Thus,

here provide the ‘anatomy’ and potential scope of methods for

MCO in drug discovery. In particular, we focus on MCO methods

based on desirability functions.

Digging in the brain of a female flamingo: MCO
Similar to the female flamingo in our parallel story, a chemist at

the start of a drug discovery project already has in mind the type of

compound(s) that is being looked for. In both cases, the aim is to

reach an objective (being that a male to mate with, or a drug

candidate) by walking a viable route. In this scenario, a potential

solution is a multidimensional search space (i.e., a complete

combinatorial library or all the males in the flamingo colony)

that is highly scored across all dimensions. The idea of scoring

compounds based on multicriteria functions is not new in drug
te compounds
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TABLE 1

Examples of formalized MCO applications in drug discovery that maximally exploit different features of the desirability principle

Application Endpoints being co-optimized Desirability function feature(s) that
is (are) most exploited

Refs

Central nervous system
marketed drugs

Lipophilicity; distribution coefficient; topological polar
surface area; molecular weight; number of hydrogen bond
donors; most basic center

Solution ranking and VS [33]

Non-nucleoside HIV
reverse transcriptase (RT)
inhibitors

RT inhibitory efficacy; toxicity over MT4 blood cells Solution ranking and VS [54]

Antidepressant drugs Binding to a targeted receptor (tR); functional assay on a
receptor different to tR; binding to other four receptors;
probability of non-mutagenicity; metabolization rate

Adaptability [28]

Inflammatory/immune
process (P2X7 inhibitors)

Potency; solubility; safety Ability to deal with missing values and
data uncertainty; avoiding hard filters

[26]

Antibacterial activity
(fluoroquinolones)

Potency; safety; bioavailability Solution ranking and VS [35]

Central nervous system
marketed drugs

Aqueous solubility; human intestinal absorption; calculated
logP; P-gp transport; plasma protein binding; CYP2D6
affinity; CYP2C9 affinity; blood–brain barrier penetration;
hERG inhibition

Ability to deal with missing values and
data uncertainty; avoiding hard filters

[29]

Antialzheimer agents Affinity; selectivity Solution ranking and VS [55]

Extended-release
formulations for
propranolol

Set of 20 pharmacokinetics parameters Adaptability; avoiding hard filters;
solution ranking and VS

[27]

Optimization of oral drugs MOLECULAR weight; ALOGP; number of HBDs; number of
HBAs; molecular PSA; number of ROTBs; number of AROMs

Solution ranking and VS [56]

Inhibitors of serotonin 5-
hydroxytryptamine (5-
HT1A) receptor

Set of 11 pharmacokinetics parameters Ability to deal with missing values and
data uncertainty

[57]
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discovery: the Rule of Five (Ro5) for the design of oral drugs

initially proposed by Lipinski et al. [12] was one of the earliest

and perhaps the most popular example of such an approach. The

Ro5 inspired many others and encouraged the implementation of

other rules for assessing the ‘drug-likeness’ of compounds [13].

Despite their applicability, the Lipinski Ro5 as well as other

related approaches reflect a static view of drug discovery [11] that is

based on a compound-centric perspective typical of lead optimi-

zation projects [14]. However, to quantify the progression of lead

optimization projects through process-centric analysis, statistical

frameworks are needed. Such process-centric statistical frame-

works operate as compound prioritization systems that are flexible

and easily adaptable to issues, such as druggability and safety

concerns, binding potency, and even conflicting properties, that

emerge from the early stages of the drug discovery process. In this

context, MCO methods are useful because they accelerate the

identification of candidates at each stage of the drug discovery

process.

There are numerous examples of MCO methods applied to drug

discovery: to derive multiobjective quantitative structure-activity

relationship (QSAR) models [15,16]; to trade-off scoring and pos-

ing in molecular docking [17,18]; to build maximally diverse and

drug-like molecular libraries; and to carry out de novo design

programs [19,20]. In this respect, the variety of mathematical

implementations of MCO methods is vast, including the simple

application of multiple property filters and complex data integra-

tion and classification schemes (e.g., support vector machines), all
with arguable pros and cons. However, it can be difficult for

inexperienced chemists to navigate this rainbow of possible

MCO approaches. The lack of a specific knowledge background

and the intrinsic complexity of such methods are the main reasons

why these approach have gained little practical use and are not

appealing to nonstatistician practitioners. Here, we highlight the

‘real-life’ potential of MCO methods and introduce these concepts

to nonexperts. Emphasis is given to the implementation of the

desirability functions that, just as in evolution, exert a kind of

natural selection process to address the choice of the best possible

option.

For the sake of clarity, we exemplify this concept once more. If

we are to perform a MCO on a compound series based in a standard

(less natural) fashion, we would apply several serial filters, each

one stepwise, controlling a given property, such as molecular

weight, solubility, and so on. However, the optimization of a

property at a given stage can sometimes be to the detriment of

another one at a different level. In our proposed strategy, the

optimization process aims to find an optimal balance between all

the properties so that deviations in even one property will affect

the overall solution [21]. Coming back to our flamingo example,

even when the female looks for the best demonstration of male

attributes, such as feather color intensity and curvature of the

beak, natural selection imposes boundaries along which such

characters might manifest. For instance, intense feather color is

disadvantageous because it makes the male an easy target for

predators, whereas a beak that is too curved beak its ability to
www.drugdiscoverytoday.com 1491
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find food [9,10]. Applied to drug discovery, the desirability func-

tion aims to achieve the optimal trade-off between different

compound properties.

First introduced by Harrington in 1965 [22], the desirability

function approach is one of the most widely used methods in

industry for the optimization of multiple response processes. It is

based on the idea that the quality of a product or process that has

multiple quality characteristics but where one is outside some

desired limit is completely unacceptable. The method finds oper-

ating conditions (i.e., the properties) that provide the most desir-

able response values (i.e., the endpoints). The desirability principle

is especially useful for solving problems that involve incommen-

surate and conflicting responses that require simultaneous opti-

mization to some extent, because separate analyses can result in

incompatible solutions [23].

In this respect, a widely pursued MCO strategy comprises com-

bining multiple individual endpoints into a single composite

optimization function: the desirability function. It offers some

advantages over other MCO approaches, including: (i) desirability-

based methods are easy to understand, easy to use, and highly

flexible when incorporating decision-maker preferences (weights

or priorities assigned to responses); and (ii) the most popular

desirability-based method, the Derringer and Suich’s method

[24] or its modifications [25], are available in many data analysis

software packages.

Most reviews on MCO, including surveys of desirability-based

approaches, focus on examples of successful applications of MCO

to drug discovery. However, this can be hard to follow for unfa-

miliar readers, in particular nonstatisticians. Here, we take an

anatomical tour through the desirability principle because we

believe that drug discovery will benefit from four advantages to

its use: (i) avoiding hard filters; (ii) its adaptability; (iii) its ability to

deal with missing values and data uncertainty; and (iv) solution

ranking and virtual screening (VS). Therefore, here we review those

studies that best describe each of these features (Table 1).

Seeing through the eyes of a female flamingo: what is
desired?
A desirability function is a mathematically simplified description

of a decision-maker preference. It transforms an objective function

to a scale-free desirability value, which measures the decision-

maker satisfaction against the objective value [11]. In the context

of drug design, the decision maker is the chemist and the objective

functions, as shown in Table 1, refer to the endpoint values, which

can be experimentally measured or theoretically predicted. Here,

we highlight four features that make desirability functions appro-

priate for drug discovery projects.

Feature 1: avoiding hard filters
By using a desirability function, one can avoid the artificial harsh-

ness of using dichotomic filters. The desirability function enables

the translation of the value of an endpoint into a number ranging

from 0 to 1, where a desirability equal to 1 indicates an ideal

endpoint value, whereas a desirability equal to 0 indicates a

completely unacceptable outcome. In contrast to the binary

pass/fail outcome of hard filters, this approach provides a contin-

uous desirability scale accounting for even slight changes in the
1492 www.drugdiscoverytoday.com
value of the endpoint. This enables in-depth and more informative

compound analysis and quality assessment [11].

Desirability functions can take many forms (see [1,26] for

graphical representations), which mostly depend on the so-called

‘shape factors’ flagged by the user. For instance, the desirability

function can take a single input (an assay response that is a

potency measure in nM units) and transform it according to the

linear decay between given thresholds for modeling. This ap-

proach can be easily extrapolated to the usual practice in medici-

nal chemistry, where a drug designer intuitively works with

thresholds and acceptable ranges for endpoint values [26]. Sup-

pose an acceptable potency ranges from 500 nM to 50 nM, the

desirability function will return a score of 1 for compounds with

potency <50 nM and a score of 0 for compounds with potency

>500 nM. A score in the interval [0,1] is given to all the other

compounds completing the piecewise linear desirability function.

Irrespective of whether the piecewise desirability function is line-

ar, sigmoidal, or of another form, the use of the desirability

function has the benefit of smoothing endpoint values compared

with to hard filters [11]. Once each endpoint has been assigned a

[0,1] desirability score, all the endpoints can be combined into an

overall weighted desirability.

There are still two open questions. First, how can we assign

weights to the desirability scores of individual endpoints? Second,

how can we choose the aggregation scheme to integrate informa-

tion relative to all endpoints being optimized to provide a unique

desirability score per compound? Regarding the first question,

weights should reflect the current priorities in a project,which

can change from the very early stages. This means that equally

weighted desirabilities can be set, whereas priorities are not well

established, and that the weights can change if some issues be-

come critically important to solve during the course of the project.

For the second question, there are several possible ways to convert

the multiple individual endpoint desirability values into a single

comprehensive measure of overall desirability. This includes the

simple summation of all individual desirability scores, the weight-

ed geometric mean, among others (reviewed in Refs [26,27]).

At the end, the overall desirability value is always maximized so

that the optimal settings of the ingredient amounts can ensure the

best balance among the multiple characteristics of interest. By

doing so, drug design becomes a more natural process that is

comparable with human nature in the sense that one is not able

to grasp a complex set of values until the impact of them is seen in

a concrete way.

Feature 2: adaptability
Unlike those based on sequential hard filters, modern drug design

projects need to be flexible and easily adaptable to unforeseen

changes. The desirability principle implements such flexibility

into drug design projects by enabling us to optimize what is

needed at any stage. By applying the steps described in ‘Feature

10 of the desirability principle, a designer can automatically create

custom functions to optimize any number of endpoints (or prop-

erties) at any point during the process. For instance, we have

mentioned that weights assigned to the desirability scores of

individual endpoints can change from one stage to another, when

the project goals change, or when our understanding of the

chemical and biological systems sharpens.
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Work by Le Bailly de Tilleghem et al. [28] is an excellent example

of how we can maximally benefit from the adaptability and

flexibility of the desirability principle. In this research, the authors

aimed to generate new potential drugs by using combinatorial

chemistry, implying the selection and combination of R-groups

and reagents for decorating a lead compound to generate novel

candidates. Such an approach leads to the creation of chemical

libraries usually containing a very large number of virtual com-

pounds, far too large to permit their chemical synthesis. Here is

where the desirability principle comes in handy to select a smaller

subset of ‘good’ reagents for each R-group and synthesize all their

possible combinations. However, the number of possible subli-

braries is huge, making the task unfeasible in a reasonable time. Le

Bailly de Tilleghem et al. found a way to explore each possible

sublibrary in a parallel fashion by applying custom desirability

functions, each one tailored to the specificity of the sublibrary in

question [28]. The tailoring process is guided by a weighting of the

endpoints that is recursively adapted as the solution space is

explored.

Another striking example of adaptability is reported in the case

of the optimization of a pharmaceutical formulation [27]. When

applying the weighted overall desirability value (calculated as

mentioned above) for the optimization of a pharmaceutical for-

mulation, the results are not always those expected. Instead, they

are sensitive to the weights, whose values are highly subjective.

Moreover, traditional desirability function-based methods only

take into account the means of the compound characteristics. To

overcome these limitations, Li et al. [27] implemented additional

parameters accounting for the response variance and covariance

into the desirability function, thus obtaining more reliable out-

comes.

Feature 3: ability to deal with missing values and data
uncertainty
The ability of desirability functions to deal with missing values

(and with data uncertainty) is perhaps their most important

feature. When experimental data are used in the framework of a

MCO project, often there are molecules devoid of experimental

values. At this point, any MCO approach that applies ties between

optimization and data completeness will leave us stranded mid-

way. Once more, the desirability principle comes in handy. In this

respect, the designer can take two possible decisions: (i) to imple-

ment a mathematical expression for the overall desirability score

(aggregation scheme) that explicitly accounts for gaps in the data;

or (ii) to make use of an imputation system to fill in those missing

values. There are several examples in the literature for both strate-

gies (refer to Table 1 for selected examples).

Nissink et al. [26] transparently dealt with missing values by

adopting the approach of so-called ‘dimensionality reduction’.

Depending on the number of available data points (properties

with experimentally measured values), the dimension of the prop-

erty space for each compound is defined. Thus, it is possible that,

for compound A, the overall desirability score is calculated on the

basis of four values, whereas that for compound B is done on the

basis of only three values. By contrast, Segall et al. [29] took

advantage of in silico models, such as SAR models, specifically of

their ability to predict properties of virtual structures. In silico tools

have the potential to derive a meaningful properties space in terms
of both the number of processed molecules and the property

spectrum.

However, when choosing the path for data imputation, we

acknowledge that not all the predicted values have the same

reliability. Even for experimentally determined values, their reli-

ability could vary substantially. An experimental value from an

assay with a high signal:noise ratio has higher reliability than a

measure from a different assay with a low signal:noise ratio [11].

Greater attention is now paid to assessing the uncertainty of the

data used for the selection and optimization of compounds [1].

Unless the selected MCO approach explicitly reflects the impact of

combining multiple uncertain data points into an overall assess-

ment of compound quality, there is a high risk of incorrectly

rejecting good compounds because of uncertain predictions.

The probabilistic nature of the desirability functions makes them

suitable for explicitly approaching data uncertainty. Nissink et al.

[26] considered the potential for errors in the overall desirability of

a compound resulting from the uncertainty in the underlying

predicted or experimental compound data. They examined the

probability that the desirability of each compound property is

greater or less than the value assigned and combined these into an

overall confidence parameter for the compound score. This strate-

gy provides an indication of cases where a compound score should

be treated with caution. In general terms, the weighting of various

measures (i.e., desirability functions) can reflect their importance

with respect to not only the goals of the project, but also the

reliability of the measures.

Feature 4: solution ranking and virtual screening
The ultimate goal of a MCO approach is to end up with a narrowed-

down pool of optimal compounds that will survive for further

applications (i.e, a male to pair with in our parallel flamingo story).

As in the flamingo courtship ritual, where the female has to rank

all the male candidates, a chemist can find the optimal compound

by ranking a plethora of compounds based on an objective func-

tion. However, a question arises here: should we prefer to perform

simple ranking based on the overall combined desirability score or

should we prefer to explicitly model compound optimality among

our solutions space? The latter can be addressed by the Pareto

optimization. This optimization scheme is based on the assump-

tion that there might not be a single optimal solution to an

optimization problem, but a family of possible equivalent trade-

off solutions [30]. A Pareto optimal solution (a compound in the

context of drug discovery) is one for which there is no other

solution that is better in all other properties. In other words, a

compound is Pareto optimal if, when examining the aspects being

considered (i.e., endpoints), further improvement to one property

would come at the detriment of one or more other properties of

that molecule.

Pareto optimization is best applied in situations where an ideal

compound cannot be found and the acceptable trade-offs between

properties are not known a priori [1]. The Pareto algorithm samples

different properties combinations, which can be studied further to

determine the best compromise (i.e., trade-off). However, a limi-

tation of Pareto optimization is that the number of optimal

compounds increases exponentially with the number of properties

being optimized. In practice, the number of optimal compounds

becomes too large to be useful when considering more than
www.drugdiscoverytoday.com 1493
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approximately four properties [1]. A further limitation is that data

uncertainty cannot be explicitly incorporated into the Pareto

optimization scheme. This becomes an important drawback when

the MCO approach is used as a strategy to fill in missing data, such

as by using in silico SAR models. The uncertainty associated with in

silico predictions are traditionally captured in what is called the

‘applicability domain’ [31,32], an especially important concept in

QSAR that allows researchers to estimate the reliability in the

prediction of a target molecule based on the information used

to build that model [33].

Desirability-based optimization can overcome all the limita-

tions above described for Pareto optimization when it is combined

with the appropriate classification schemes. As anticipated in the

previous paragraph, it is possible to explicitly incorporate data

uncertainty during desirability function calculations. Therefore,

the desirability functions can, in various ways, account for the

domain of applicability when used side-by-side with QSAR studies

(which can act as a classification schemes). As shown by Cruz-

Monteagudo et al. [34–36], desirability-based MCO strategies en-

able researchers to conduct global QSAR studies to detect predictor

variables that produce the best possible compromise among con-

sidered properties (endpoints). The resultant QSAR model can be

easily used for downstream applications, such as VS, as discussed

below.

To wrap up the discussion on whether it is better to pick the best

compound from a ranking list or to perform an optimality search

from desirability scores, let us consider the flamingo parallel story

once again. At the end of the courtship ritual, the female is

compelled to pick a male to reproduce. As selfish as our instinct

is, the ultimate goal of the female decision is to pass her genes to

the progeny, so she expects the selected male to be as good as

possible during the nesting season for their progeny to survive. In

the absence of previous experience with this particular male,

selection by the female is full of uncertainty but she perceives

the male as a plausible best choice, having no evidence this male is

an optimum one. In essence: when dealing with data uncertainty

(which commonly happens in drug discovery), compound ranking

will work better than searching for an overall optimal compound.

The flamingo dancing courtship in action
To show the potential of the desirability principle, we herein first

describe how to construct tailored ensembles-derived desirability

functions for multicriteria VS. Such a method was challenged on

two real-life case studies. The proposed approach incorporates the

aforementioned advantages of the desirability functions when

applied to multicriteria research programs for drug discovery. In

essence, this methodology: (i) avoids the use of hard filters; (ii) is

easily adaptable to the current requirements; (iii) can deal with

endpoint missing values; and (iv) provides a continuous score to

prioritize chemical compounds after screening large databases. In

addition, our approach based on ensemble modeling ensures

better coverage of the chemical space through the definition of

a dynamic applicability domain [37].

To use desirability functions in MCO, it is mandatory to have

measurements of all endpoints for every sample in the data set.

Unfortunately, this is not usual in most drug discovery problems.

The most common scenario in a drug discovery campaign where

different properties are to be simultaneously optimized is that data
1494 www.drugdiscoverytoday.com
for each endpoint were not always measured for all the com-

pounds. Even worse, these pools of compounds for which the

properties under investigation have been measured are often of

limited size and, thus, cover only a small region of the chemical

space. To address these issues, we propose the use of accurate,

robust, and predictive classification ensemble models as predictors

for each endpoint. These ensemble models are built from base QSAR

models according to good practices for QSAR modeling [38]. In this

respect, it is important to define the applicability domain of the

model to be able to confidently predict samples not used to train the

model. In our proposal, the applicability domain of the base models,

as well as of the ensembles, is explicitly considered throughout the

modeling process, from the training of the base models to the

prediction of the final aggregated multicriteria desirability.

Unlike using regression models, we use desirability functions

derived from classification models to minimize the risk of noise in

the modeling process [39,40]. This usually happens because end-

point data come from different labs and measurements can sig-

nificantly deviate from one experiment to other even when the

same protocols have been used. As a result, the uncertainty related

to the determination of accurate endpoint data is the main reason

to develop classification models.

The choice of one ensemble of QSAR models as the predictor for

each property is justified by the success of this type of modeling

strategy in previous studies [41,42]. QSAR modeling bases on the

similarity principle: that is, compounds with similar structures

should have similar bioactivities. In brief, QSAR modeling corre-

lates the structure of chemical compounds with their bioactivities

[43]. This is done by codifying the chemical structures through

molecular descriptors, which results in their transformation into

vectors of features containing relevant structural information.

This information is then used as input for statistical and ma-

chine-learning algorithms leading to models (which can be seen

as black boxes) capable of predicting the bioactivity of new com-

pounds.

To ensure a proper QSAR modeling workflow, it is necessary to

perform a curation of the data (compounds and bioactivities) used

in the modeling process and the thorough validation of the

proposed models, and to define the applicability domain of the

models [38,44]. The data curation process includes steps such as:

ring aromatization; normalization of specific chemotypes, such as

nitro, to one unique representation; the curation of tautomeric

forms; the removal of duplicate structures; the unambiguous

assignment of each compound to a group; and the identification

of activity cliffs [45]. In addition, QSAR models need to be properly

validated. Besides measuring the accuracy of a model, cross-vali-

dation experiments have to be performed to estimate its potential

generalization capabilities. Ultimately, a set of compounds with

known bioactivities (external test set) has to be reserved to evalu-

ate the real predictive power of a model once it has been trained

and validated.

A critical step when using a QSAR model for the prediction of

the bioactivity of new chemical compounds is to establish whether

the model is suitable for this task. This evaluation is performed

based on the definition of an applicability domain for the model

[31,38]. This can be established based on the similarity of the

compound to be predicted to the compounds used to train it. Also,

the range of the values of the descriptors the model is trained from
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can be used to define the applicability domain of a model. If a

chemical compound is within the applicability domain of a model,

then the bioactivity prediction it makes for the compound can be

considered reliable.

It is a fact well accepted by QSAR practitioners that no model

can capture all information related to the SARs. Ensemble model-

ing has emerged as an effective approach to obtain a more com-

plete description of this relationship [41,42]. The rationale behind

ensemble modeling is to develop a set of local models, that is,

models that are accurate and predictive in different regions of the

chemical space. These models are then aggregated, for example

through the averaging of their outputs, to produce a prediction

that considers different sources of information. Given that ensem-

ble models comprise the aggregation of a set of diverse models, the

applicability domain of this ensemble increases relative to that of

the individual models.

Tailored ensemble-derived desirability functions for multicriteria
VS
The approach proposed herein is based on three steps. In the first, a

predictive ensemble model for each individual endpoint is derived

from a pool of base QSAR models. In the second, these ensemble

models are used to return the predicted classification scores of a

given data set. Afterward, these scores are transformed into indi-

vidual endpoint desirability values, which are finally combined to

obtain a desirability-based multicriteria prioritization VS tool. The

overall workflow of our methodology is depicted in Fig. 2. The

complete methodology was implemented in MATLAB [46].

The steps involved in this modeling workflow are summarized

below. A complete detailed description of all these steps is provid-

ed in the Supplemental information online.

(i) Data preparation

As routinely done in chemoinformatics programs, the first step of

our approach is to compile, curate, and codify through molecular

descriptors a data set of chemical compounds per endpoint. All

compounds included in an endpoint data set should have a known

reference bioactivity value defining its membership to either the

active or inactive group. Molecular descriptors were calculated

with the ISIDA Fragmentor software (freely available at http://

infochim.u-strasbg.fr/spip.php?rubrique49). The top-250 more in-

formative (i.e., those with higher relevance and lower redundancy)

descriptors were selected by using the mRMR algorithm [47].

(ii) Training a pool of base models per endpoint

The next step involves the training of a pool of diverse base

classification models per endpoint. To ensure diversity, a random

features subset selection strategy was used. Each base model can

contain several descriptors ranging from 5 to 25. To be acceptable,

a base model should return an accuracy value in predicting the

training and test sets, as well as in fivefold cross-validation experi-

ments, no lower than 0.65. Test set compounds are predicted only

if they are inside the applicability domain of the model. For the

generation of the base QSAR models, the Least Squares Support

Vector Machines (LSSVM) classification algorithm was used [48].

The applicability domain of the base models is defined accord-

ing to the molecular descriptors range method [31]. In this case,

each feature included in the model is used to build a hyper-

rectangle defined by the maximum and minimum values of the

features on the training data. A sample is considered to be inside
the model applicability domain if it is included in the defined

hyper-rectangle.

(iii) Aggregation of the base models into an ensemble

model

Base models were aggregated into ensembles following three dif-

ferent data fusion strategies: Major vote (MV), Borda vote (BV), and

Scores vote (SV). For MV aggregation, given a pool of base models,

the class of each compound is predicted by each base model. The

sample is assigned to the class having the higher number of votes

[49]. In BV [37] aggregation, each classifier ranks the candidates.

To this end, the base classifiers have to provide a continuous

estimator accounting for the support a given to a class prediction.

The scores produced by the base LSSVM models were used as

ranking criterion. For BV, if there are N candidates, the first-place

candidate receives N � 1 votes, the second-place candidate

receives N � 2, and so on, with the candidate in last place receiving

0 votes. The last aggregation strategy is based on the combination

of the classifier output scores [37]. For this aggregation strategy,

the LSSVM scores produced by the base models are first averaged. A

given compound is assigned to the active class if its aggregated

score is positive, whereas it is assigned to the inactive class if its

aggregated score is negative. Irrespective of the aggregation strat-

egies, only those models including a sample within their applica-

bility domains are considered as valid decision makers, thus

conferring a dynamic nature to the ensemble-based decision-mak-

ing process.

One of the factors influencing the performance of ensemble

models is the diversity of the base models being aggregated [37]. To

ensure a good level of diversity, two different strategies were used

for the selection of base models. The first was based on a clustering

approach, whereas the second used Genetic Algorithms (GA). In

particular, two different distance metrics were considered for

clustering and six different fitness functions were challenged for

the GA optimization.

For each endpoint, the best ensemble is selected as the one

having the highest value of the Balanced Classification Rate (BCR)

metric among all modeling methods. The BCR metric is defined by

Eq. (1):

BCR ¼ Se þ Sp

2
� 1 � jSe � Spjð Þ ð1Þ

where Se and Sp indicate the sensitivity and specificity of a model,

respectively. This metric is a modification of the well-established

Correct Classification Rate [50] and gives the highest scores to

models with the best balance between Se and Sp.

The applicability domain of the ensemble models was defined as

the union of the applicability domain of the members of the

ensemble. This approach increases the applicability domain of

the ensemble model relative to that of the individual models.

When predicting a new sample using an ensemble model, only the

models having that sample within their applicability domain are

allowed to contribute to the aggregated decision.

(iv) Transformation of classification scores to

desirability values

Once one ensemble has been selected as the final classifier for each

endpoint, it can be used to predict the classification scores of new

compounds considering the applicability domain of the ensemble.

A given sample is predicted by considering the arithmetic mean of
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Overall workflow of the proposed methodology.
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the scores produced by the base models including it inside their

applicability domain.

These scores are transformed into desirability values as reported

in the Supplemental information online. This transformation is

based on the aggregated scores across training, test, and external

data sets. For a new sample, its aggregated score has to be predicted

by the endpoint ensemble. Then, this score can be translated into a

specific desirability value.

As shown in Fig. 3, compounds provided with positive/negative

LSSVM scores will be predicted as actives/inactives. The higher the

scores are, the larger the distances from the classification boundary
1496 www.drugdiscoverytoday.com
and, as consequence, the higher the desirability values. Com-

pounds close to the classification border will have score values

close to 0.

For a pool of compounds with a measured endpoint, the classi-

fication scores can be translated to desirability values following a

simple rule: the highest scored compound receives a desirability

value equal to 1, while the lowest scored compound receives a

desirability value equal to 0. In addition, a scale factor is defined

(see Supplemental information online) so that a score value of 0 is

transformed into a desirability value of 0.5. Once the transforma-

tion from scores to desirability values is defined, any new predicted
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sample can be represented in terms of desirability. If the score of

the new sample is greater than the highest score for the reference

data, it gets a desirability value equals to 1. By contrast, if its score is

lower than the lowest score in the reference data, it is assigned a

value of desirability equal to 0. A new sample will get a value of

desirability in the interval [0,1] when its score lies between the

highest and lowest scores with respect to the reference data.

(v) Aggregation of the desirability values into the final

desirability-based multicriteria prioritization VS tool

The last step is needed to aggregate the individual desirability

values into one multicriteria decision-making VS tool. This aggre-

gation step involves computing the weighted geometric mean of

the desirability values corresponding to the individual endpoints.

Two different scenarios were investigated. In the first, all end-

points were assigned the same weight, which, for convenience,

was set to one. As a second variant, all the weights were enabled to

vary in the interval [0.5, 1] by using a GA engine to find the

optimal weights maximizing the enrichment of active compounds

in the first 1% of a ranked ad hoc built validation set.

Proof of concept
Two multicriteria drug discovery problems were challenged in our

proof of concept. The first involved the identification of nontoxic

antimalarial hit compounds requiring the optimization of three

separate endpoints: activity against a drug-sensitive Plasmodium

falciparum strain (3D7); activity against a multidrug-resistant P.

falciparum strain (W2); and compounds toxicity (Huh7). The

second problem aimed to identify dual-target compounds acting

as A2A adenosine receptor (A2AAR) antagonists as well as mono-

amine oxidase B (MAO-B) inhibitors. In the case of antimalarial hit

modeling, there was a large overlap among the compounds

assayed for the three different endpoints. Instead, a minimal

overlap existed between the data sets used for identifying dual-

target compounds, thus making the modeling process more diffi-

cult.

The structural overlapping among compounds measured for

each property defining the multicriteria problem is a critical factor

that can affect both the classification and VS performance of
consensus classifiers used for multicriteria VS. For problems where

structural overlapping is high, the reliability of predictions is

favored because all cases involved in each property to predict

share a large chemical space. Consequently, base models will be

based on similar structural patterns. Accordingly, when the struc-

tural overlapping is low, the reliability of predictions can be

affected if the applicability domain is not considered during the

selection of the base models constituting the final consensus

classifier.

Taking into consideration the above-mentioned issues, we chal-

lenged our approach in these extreme scenarios to gain insights

into the influence of such a critical factor on the reliability and

performance of the proposed multicriteria VS approach. These

data sets were subject to a thorough preparation and curation

treatment as described in the Supplemental information online.

For assessing VS performance, two panels of 50 hit compounds

each were used in the case the malaria data set and two groups of

eight dual-target A2AAR/MAO-B compounds were used for the

dual-target case study.

The SD files, including compound structures and biological

annotations of the training, test, external, and VS validation sets,

as well as lists of the final subset of 250 ISIDA Fragments per

endpoint, are provided in the Supplemental information online.

Table S1 in Supplemental information online also summarizes the

composition of all these sets.

A total of 1001 base models satisfying the previously defined

acceptability criteria were trained for each endpoint for each data

set. The performance metrics of the base classifiers are summarized

in Table S2 in the Supplemental information online.

In the case of the antimalarial compounds, the models for the

toxicity endpoint (Huh7) returned better average performances

than those for antimalarial endpoints (3D7 and W2). In the case of

the dual A2AAR/MAO-B ligands, the best performance was

obtained for the MAO-B inhibitors. In addition, the performance

of the base models was higher in the modeling of the dual A2AAR/

MAO-B ligands. This can be explained based on the diversity of the

modeling data sets. In the case of the dual A2AAR/MAO-B ligands,

the data set was less structurally diverse was the antimalarial one.
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This different structural diversity means that there are fewer rules

guiding the bioactivity of dual A2AAR/MAO-B ligands, making the

discovery of these rules easier throughout the machine learning-

based modeling process. The drawback of this lower structural

diversity is that the applicability domain of the dual A2AAR/MAO-

B ligands ensemble covers a narrower region of the whole chemical

space compared with the antimalarial model.

The selection of the best model, not only in the case of the base

models but throughout the classification modeling workflow, is

based on the maximum value of BCR achieved for the test set. In

addition, the external data set is only used for the verification of

the predictive capability of the selected models and its prediction

does not affect the decision regarding the selection of the best

models.

As described above, different strategies were adopted for com-

bining base models into ensembles for each endpoint. Not sur-

prisingly, the best-performing ensemble was obtained by using a

GA to select its base models. In addition, for the two endpoints

related to antimalarial activity (3D7 and W2), the best-performing

ensemble was found when the base models were combined using

the SV aggregation strategy and the GA maximized the value of

BCR. By contrast, the best ensemble for the toxicity endpoint

(Huh7) was found using MV for the aggregation of the base models

and the Akaike Index Criterion (AIC) was minimized.
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In the case of the dual A2AAR/MAO-B ligands, the best ensem-

bles were obtained when BV and MV were used for the maximiza-

tion of BCR during model aggregation for A2AAR and MAO-B,

respectively. The statistics for the best ensemble per endpoint are

summarized in Fig. 4 and presented in more detail in Table S3 in

the Supplemental information online.

The obtained ensembles improved the average performance of

the base models for the five endpoints. From Fig. 4, it can be seen

that the ensemble models (solid bars) showed better performance

than the average of the base models they were composed from

(dotted bars) for all endpoints. More importantly, these ensembles

also improved the performance of the best base model for all

endpoints (see Tables S2 and S3 in the Supplemental information

online). Although the quality of the ensemble models is granted by

optimizing performances on the test set, the improvements are not

obtained at the expense of the statistics in predicting the training

set. The obtained ensembles also showed a better balance between

sensitivity and specificity compared with the base models.

We found that the less complex ensemble comprised five base

models, whereas 14 base models were encompassed in the more

sophisticated ensemble. These numbers of model represent ap-

proximately 1% of the total number of base models. If the perfor-

mance of the selected ensembles was compared to that obtained

when all base models were aggregated, the overall classification
l data set

s data set

MAO-B

W2 Huh7
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Test

External
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accuracy increased by approximately 10% (data not shown). This

highlights the importance of combining a tailored subset of base

models comprising a certain level of diversity rather than large

numbers of base models.

Given that the external data set is used only to assess the

predictive potential, we can be confident that the obtained ensem-

bles can generate trustworthy score values in the case of com-

pounds within their applicability domain.

The next step of our approach is the conversion of the ensemble

classification scores into endpoint desirability values. This was

guided by the highest and lowest scores predicted by the ensemble

across all the training, test, and external sets. All these processes

were carried out as previously described.

To evaluate the VS performance of our approach, three different

VS Validation Sets (VSVS) were designed. The first VSVS (VSVS-1)

comprises, in the case of the antimalarial data set, 50 known

antimalarial hits and a pool of decoys selected using the DUD-E

server [33]. For the dual A2AAR/MAO-B ligands, the DUD-E decoys

were generated for eight known dual-target ligands to form the

VSVS-1. These VSVS-1 were used for the optimization of the

individual desirability weights used to aggregate them into the

final multicriteria VS tool.

Given that VSVS-1 was used for the optimization of the weights,

two more VSVS, namely VSVS-2 and VSVS-3, were built for each

data set. These sets were built from a second subset of 50 antima-

larial hits and eight dual A2AAR/MAO-B ligands. The decoy mole-

cules for these second sets of positive compounds were generated

with the DUD-E server for VSVS-2 and with the DecoyFinder [34]

application for VSVS-3. The classification scores were computed

for the VSVS and were transformed into desirability values accord-

ing to the previously established transformations. The SD files with

the VSVS structures are provided in the Supplemental information

online.

The final ensembles for all endpoints, except for MAO-B inhi-

bitors, contained all compounds of the VSVS within their appli-

cability domains. By contrast, no single model in any of the

ensembles had all samples in the VSVS within its applicability

domain. To illustrate the benefits of using the ensemble model-

ing strategy over individual models from the applicability do-

main point of view, the worst-case scenario corresponding to the

modeling of MAO-B inhibitors can be analyzed. In this case, the

individual models covered, on average, 87% of the samples

included in the VSVS. However, the applicability domain of

the ensemble covered 99.94% of all samples included in the

VSVS. That is, in the worst-case scenario, the applicability do-

main of the ensemble model can increase the coverage of the

chemical space by 13% relative to the individual model average.

This fact clearly highlights one of the advantages, in terms of

coverage of the chemical space, of using ensemble models instead

of individual models.

Going back to our flamingo analogy and having all decision

makers properly described (endpoint desirability values), the fe-

male flamingo (chemist) is ready to take her decision on which

place each candidate (compound) should have in an ordered list.

In this final step, the individual endpoint desirability values are

combined into the final multicriteria VS model. As previously

mentioned, we examined two scenarios: all the endpoints received

the same unitary weight for aggregation and the weights were
optimized to maximize the initial enrichment of actives in the first

1% of screened data.

These experiments were performed using the three VSVS previ-

ously built. In the worst-case scenario, the VSVS comprised 55

decoys per active ligand. Such an active ratio is well over the

minimum of 36 proposed in [51] for an unbiased estimation of the

performance of VS methods [52]. The results relative to these two

cases are shown in the accumulative curves of Fig. 5, whereas other

details are provided in Table S4 in the Supplemental information

online. The values of BEDROC at 1% of screened data for the

unweighted aggregation are presented as bars for both modeling

problems in Fig. 5.

For comparison purposes, we also studied the VS performance of

the aggregation of the classification scores without transforming

them to desirabilities. For this comparison, the classification scores

of each sample were aggregated across all problem-related end-

points using the arithmetic mean. These aggregated scores were

then used as the multicriteria VS ranking criterion. The accumu-

lation curves obtained for these experiments are shown in Fig. 5.

The results obtained showed the robustness of the proposed

methodology and its suitability for VS campaigns. More impor-

tantly, all the experiments showed a significant initial enrichment

of active compounds even at very low fractions of screened data.

This observation holds true even in the case of the worst-perform-

ing VS validation experiments. Furthermore, the optimization of

the weights for the aggregation of the individual desirability

functions can only provide a slight improvement in the initial

enrichment of active compounds. This means that weights opti-

mization is not necessarily mandatory for obtaining effective VS

tools. In addition, neither the actives nor the decoys included in

the VSVS had ever been previously used at any modeling stage.

In the case of VSVS-2 for the antimalarial compounds, in addi-

tion to the ligands and the decoys, the six confirmed inactive

compounds, common to the three endpoint external sets, were

also present in this set. These inactive compounds had never been

used in the modeling process of any of the individual endpoints.

None of these confirmed inactive compounds are ranked in the

first 1% fraction of screened data. Also, five of these compounds

were ranked beyond the 15% of screened data, occupying ranking

positions that would make them ineligible for any experimental

validation in a real VS campaign. In addition, because four of these

compounds were ranked in positions beyond the 20% of screened

data, they would be ineligible for experimental validation even

when a small database of chemical compounds is screened. When

the composition of the first 1% of screened data is analyzed, 59% of

the compounds in this data subset correspond to confirmed hits,

which represent an outstanding active rate even for a retrospective

VS validation [40].

As far as the dual A2AAR/MAO-B ligand VS validation experi-

ments were concerned, four out of the eight known dual ligands

were retrieved at early fractions of screened data in most experi-

ments, whereas the others were ranked at the end of the list. A

detailed analysis of the position that the known dual A2AAR/MAO-

B ligands have in these ranked lists shows that the compounds

retrieved at the start of the list had potencies around or below

100 nM toward both targets. By contrast, the compounds ranked

at the end of the lists were far from this potency cutoff value for

both targets. This means that our approach is capable of ranking
www.drugdiscoverytoday.com 1499
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FIGURE 5

Accumulative curves for the two case studies. Curves corresponding to Virtual Screening Validation Sets (VSVS)-1, VSVS-2, and VSVS-3 are colored red, green, and
blue respectively. Solid lines represent the curves corresponding to the weighted aggregation of the desirability functions; dashed lines correspond to their
unweighted aggregation; and dotted lines correspond to the aggregation of the classification scores. The colors of the bars representing BEDROC correspond to
the same color used for each VSVS. The bars representing the values of BEDROC obtained from the aggregation of the classification scores are presented with a
dotted pattern. (a) Cumulative curve for the antimalarial data set. (b) Magnification of the first 8% of screened data for the antimalarial data set. (c) Cumulative
curve for the dual ligand data set. (d) Magnification of the first 8% of screened data for the dual ligand data set.
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compounds with an outstanding dual-binding profile at the be-

ginning of the ranked list, whereas those with lower affinity for the

targets are positioned far away from the top of the list.

To test the worth of the desirability-based methodology pro-

posed herein, we compared its VS performance to that obtained

from the aggregation of the classification scores as described above.

The obtained results in Fig. 5 might indicate an overall similar

performance in both scenarios. However, a closer look at the first

8% of screened data as well as inspection of the values of BEDROC,

clearly support the advantages of using a desirability-based
1500 www.drugdiscoverytoday.com
methodology for multicriteria VS. In none of the six VS experi-

ments performed was the aggregation of the classification scores

able to achieve initial enrichment performances close to those

obtained with our desirability-based methodology.

All this evidence strongly supports our hypothesis that desir-

ability functions can be effectively used for the development of

high-performance multicriteria VS tools. Finally, comparison of

the classification and VS performances showed that, despite better

classification performance being achieved for the dual A2AAR/

MAO-B ligands, a better VS performance was obtained for the
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antimalarial data set. This finding supports our previous observa-

tion that good classification performances do not ensure good VS

results [35]. Thus, the evaluation of the models in VS conditions

using proper data sets is an essential component of any chemin-

formatics effort for VS.

Concluding remarks
Drug discovery can (and we believe must) be approached by

methodologies able to explicitly account for the cascade of events

initiated by biologically active compounds because of their mode

of action and poly-pharmacological character. We have demon-

strated here that it is possible to do so by considering how

evolution works. The flamingo story we describe here brought

us to a nature-inspired drug-discovery workflow that is centered on

the desirability principle. In that sense, we investigated the poten-

tial of desirability functions for the multicriteria VS of databases of

chemical compounds. For using classification scores to derive

endpoint desirability values, it is critical to rely on high-quality

classification models for a robust modeling. In our proposal, this

was achieved through ensemble modeling, a technique that, in

addition to providing trustworthy predictions, ensures larger cov-

erage of the chemical space by the applicability domain of the final

predictor. We consider that a key factor determining the success of

the proposed strategy herein is the inclusion of the applicability

domain, which is dynamically structured throughout the model-

ing process. The results provided strong evidence supporting our

hypothesis that desirability functions can be used for obtaining

highly effective and robust tools for the development of high-

performance multicriteria VS workflows.

Although ensemble models represent a good solution to the

problems under investigation, we further focus here on the devel-

opment of new methods for improving their generalization. This

future direction is motivated by the evidence that each sample in
the external set can be correctly classified by at least one base

classifier for all endpoints. Thus, using more appropriate ensemble

modeling methods could result in a considerably increase in the

quality of the ensemble predictions. Although there is room for

improving the proposed methodology, we consider that the results

obtained are promising. We recently introduced a novel systemic

QSAR approach that takes advantage of the integration of chemo-

genomic data [53]. In further research, we plan to investigate how

the present methodology could improve the multicriteria VS

performance of the systemic QSAR approach.
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