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Molecular complexity is becoming a crucial concept in drug discovery. It has been associated with target

selectivity, success in progressing into clinical development and compound safety, among other factors.

Multiple metrics have been developed to quantify molecular complexity and explore complexity–

property relationships. However, there is no general agreement regarding how to measure this molecular

feature. Herein, we have surveyed the many roles of molecular complexity in drug discovery discussing in

a critical manner different quantification methods. Through the analysis of various reference compound

databases, common pitfalls and workarounds of the quantification of molecular complexity are discussed.
Introduction
Molecular complexity, like molecular similarity and chemical

space, is an intuitive but subjective concept that is not easy to

quantify in a unique and ‘best’ manner. Furthermore, molecular

complexity has been associated with major aspects in the drug

development process such as success in progressing into clinical

development [1], target selectivity [2,3] and compound safety [4].

To establish rigorous complexity–property relationships is neces-

sary to measure the molecular complexity of chemical structures.

Although the Oxford dictionary defines ‘complex’ as ‘consisting of

many different and connected parts’ it seems that this definition is

not always followed when talking about molecular complexity. To

date, there is no global definition for molecular complexity; in

fact, it is not unusual that chemists do not agree with each other

regarding the complexity of a molecule [5,6]. Usually, molecular

complexity is defined based on heuristic parameters influenced by

each person’s background, past experience or subdiscipline. Fur-

thermore, molecular complexity is frequently associated with

synthetic accessibility but these concepts have major differences.

The first one should be regarded as a molecular property that only

depends on the molecular structure and hence is not directly

influenced by external factors. By contrast, synthetic challenges

can be variable because they depend on the skills of the chemist,
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solvents, reagents and reactions available at the moment of the

evaluation.

The lack of a unique definition of molecular complexity

brings about the challenge of finding a universal metric to

quantify it. This is reflected by the numerous approaches devel-

oped so far to measure complexity [1,7–13]. Among these

attempts there is a broad range of possibilities from simple

structural parameters, such as molecular weight, number of

chiral centers or fraction of sp3 (Fsp3) atoms, to more elaborated

formulations such as the one recently proposed by Böttcher [9].

Herein we have surveyed a broad range of implications of

quantifying molecular complexity in drug discovery and devel-

opment. The manuscript is organized in six main sections. After

this introduction, different approaches to quantify molecular

complexity are discussed. The next section presents applications

of this concept in drug discovery. After that, the dependence of

molecular complexity with different metrics through a survey of

the molecular complexity of benchmark databases is discussed,

followed by a brief presentation on the implications of molecu-

lar complexity beyond drug discovery. The review finishes by

covering general recommendations based on the authors’ expe-

rience before the concluding remarks.

Quantification of molecular complexity
Several different metrics have been proposed to date to assess

molecular complexity. Some of them are more elaborate than
1359-6446/� 2016 Elsevier Ltd. All rights reserved.
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others but all metrics capture molecular complexity to a certain

degree. It should be mentioned that a simple complexity metric is

not a synonym of poor performance.

Topological and physicochemical descriptors
A recent study showed that simple topological or physicochemical

descriptors (e.g., number of chiral centers, number of unique topo-

logical torsions, a Wiener index, ‘compactness’ descriptors, etc.) are

able to predict the perception of molecular complexity of trained

chemists [5]. To some extent, this is in line with the famous quote:

‘‘simplicity is the ultimate sophistication’’ (attributed to several

authors including Leonardo Da Vinci). In addition, many physico-

chemical or topological properties have been used independently to

assess molecular complexity. For example, Fsp3 is a common de-

scriptor of complexity because saturation enables the preparation of

more-complex molecules with larger three-dimensionality [1,2].

Similarly, the fraction of chiral centers (FCC) is also associated with

molecular complexity and not because of synthetic difficulty but

because their presence increases the number of unique molecules

with the same formula and molecular weight [2,3]. Another com-

mon example is molecular weight, which is intuitively associated

with larger and possibly more-complex structures.

Substructure-based approaches
Substructure methods assess complexity as a measure of feature

richness by counting specific chemical features and combining

them into a single score [6]. Some examples are the Whitlock

[14] and Barone-Chanon [11] indices which are calculated from

the number of rings, unsaturations, heteroatoms and chiral centers.

Other formulations can include different features, for example

atomic electronegativities and bond parameters as proposed by

Allu and Oprea [13]. It is important to mention that these methods

are broadly used despite the fact that they are usually based on

empirical knowledge and optimization.

Graph-theoretical methods
An alternative to substructure-based approaches are those known as

graph-theoretical approaches [6]. These methods usually take sev-

eral topological parameters into account using graph theory to

quantify molecular complexity, including: size, branching, cyclici-

ty, symmetry, among others [15]. For example, Bertz proposed the

use of subgraphs of a molecular graph to quantify molecular

complexity [8]. Other approaches include the one proposed by

Randić based on augmented vertex-degree [16], the one of Bonchev

who proposed two indices (TC and TC1) based on connectivity of

subgraphs [17] and the additive index recently proposed by

Böttcher [9] just to name a few from a large list of methods available

[7,18–20] including the indices based on quantum mechanics

calculations developed by Luzanov and Babich [21].

Applications of molecular complexity in drug discovery
Molecular complexity has been associated with a number of

properties relevant to drug discovery and development. The most

representative are discussed in the next sections.

Lead optimization and drug development
In recent years a number of molecular complexity metrics have

been associated with drug-likeness or with clinical success rate
[22,23]. Lovering et al. showed that compounds were more com-

plex (measured by sp3 and number of chiral centers) as they

advanced through different stages of clinical trials [1]. This obser-

vation could be explained at least in part because compounds with

higher Fsp3 carbons have more suitable physicochemical proper-

ties such as higher solubility or improved logP [23]. It could also be

related to an increased compound potency because more-complex

and less-flat structures are more likely to have a better drug–target

complementarity. The later hypothesis was evaluated indepen-

dently by Selzer et al. and Schuffenhauer et al. who analyzed the

relationship between activity and molecular complexity of a large

historical dataset from Novartis [6,24]. Both studies showed that,

considering the datasets analyzed, highly active compounds

(IC50 < 1 nM) are more complex than medium active

(1 mM < IC50 > 1 nM) or inactive compounds. In fact, putting

these results together with the conclusions obtained by Hann

et al. [12] we have a picture of the classic drug discovery pipeline:

weak hits or leads typically present low molecular complexity,

which is increased during lead optimization as part of the efforts to

increase potency or improve ADME properties.

Two subsequent logical questions are: which is the minimum

molecular complexity for a lead and which is the maximum

complexity value for a drug? The first question was addressed

by Hann et al. using Einstein’s words: ‘‘as simple as possible,

but not simpler’’. In other words, leads should be as simple as

possible but keeping crucial molecular features to be active.

Addressing the second question, a drug could be as complex as

synthetically feasible without affecting ADMET properties [6]. For

instance, natural products, which represent a large source of

bioactive molecules, usually present high molecular complexity

[25] as recently emphasized by González-Medina et al. using a

dataset of fungal compounds [4].

Selectivity and promiscuity association
Based on previous observations that link activity to molecular

complexity, it is not surprising that it can also be linked to

compound selectivity or promiscuity. The rationale is that, at least

in principle, a more-complex ligand will present better comple-

mentarity for a specific target, but not for off-targets. In fact, the

theoretical study of Hann et al. supports this hypothesis because

their results suggest that a higher molecular complexity reduces

the chance of observing interactions between a random ligand and

a protein target [12]. Nevertheless this hypothesis was not proved

with real data until Lovering showed that promiscuity decreases as

a function of molecular complexity using Fsp3 and number of

chiral centers as descriptors [2]. In a more recent work, experi-

ments by Clemons et al. supported Lovering’s observations after

testing >15 000 molecules against 100 diverse protein targets [3].

Clemons et al. found that compounds from different sources (i.e.,

commercial, academic or natural products) presented different

selectivity patterns. More importantly, these binding patterns

were highly correlated to the same complexity metrics previously

used by Lovering [1–3]. The Clemons study is relevant not only

because it supports Lovering’s and Hann’s hypotheses but also

because it showed that the complexity–selectivity relationship is

not biased by lead optimization. In fact, Fsp3 has already been used

to guide the design of potent and selective inhibitors [26]. It must

be mentioned that the fraction of chiral centers and Fsp3 are not
www.drugdiscoverytoday.com 121
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the only complexity measures that could be associated with pro-

miscuity, but they might be the most used so far because they are

easy to calculate and straightforward to interpret. However, other

measures can be employed as indicators of selectivity, for example

the size of the molecular framework. Notably, Yang et al. showed

that the fraction size of the molecular framework compared to the

whole molecule (fMF) is also associated with promiscuity and/or

selectivity [27]. Molecules with large values of fMF (i.e., large

framework and few side-chains) are more promiscuous. A direct

application in drug discovery would be using molecular complex-

ity to develop polypharmacological drugs with the minimum

number of off-targets possible [28,29].

Library design and compound selection
Given the increased awareness of the relationship between molec-

ular complexity and drug-likeness, it is not surprising that this

property is being taken into account to design chemical libraries

and select compounds. Indeed, different research groups working

on drug discovery projects have noted the need for including

more-complex molecules in screening libraries to achieve higher

success rates [30]. In fact, an analysis published in 2010 showed

that commercial vendor libraries had the lowest molecular com-

plexity compared with an academic collection or natural products

[30]. Nevertheless, this has been changing; currently more and

more chemical vendors are making available screening libraries

particularly designed to have a broad range of complexity. An

example is the Beyond the Flatland Library (http://www.chemdiv.

com/products/beyond-flatland-library/) which is enriched with

compounds with high Fsp3 content as suggested by Lovering

et al. [1,2]. Other examples include the Fsp3-Enriched Fragment

Library (http://lifechemicals.midnighters.eu/screening-libraries/

fragment-libraries/fsp3-enriched-fragment-library), the PPI Fo-

cused BBs Collection and the 3D BBs Collection (http://www.

princetonbio.com/products/targeted_bbl).

Dependence of metrics in complexity–property
relationships: a case study
Despite the fact that a number of metrics have been developed to

quantify molecular complexity, to the best of our knowledge there

are no benchmark studies that compare the metrics directly with

each other. Similar to other representations such as molecular

fingerprints [31,32], molecular complexity methods provide differ-

ent but complementary information. To illustrate the dependence

of the molecular complexity values with different metrics, we

surveyed the molecular complexity of publicly available datasets

with different measures of easy access to the drug discovery com-

munity (i.e., straightforward to compute, implemented in open-

source software or available online). As reference datasets the com-

pounds published by Clemons et al. (natural products, commercial

and academic compounds) [3] were analyzed. In addition, the

molecular complexity of three additional datasets that were used

as references was evaluated: (i) a subset of the ToxCast data collec-

tion (US Environmental Protection Agency, US Tox21 Program,

PubChem Bioassay database, Source=Tox21; http://www.ncbi.nlm.

nih.gov/sites/entrez?db=pcassay&term=Tox21) that includes 5593

compounds tested on 33 different assays; (ii) 1814 approved drugs

from DrugBank [33]; and (iii) the NIH Molecular Libraries Small

Molecule Repository (MLSMR) which is a large set of >400 000 small
122 www.drugdiscoverytoday.com
molecules typically evaluated using HTS (http://www.ncbi.nlm.

nih.gov/sites/entrez?db=pcsubstance&term=MLSMR). In this sur-

vey, the metrics compared were the fraction of chiral

atoms, Fsp3, PubChem complexity (using the Bertz/Hendrickson/

Ihlenfeldt formula [10]) and a complexity index calculated with

DataWarrior [34]. Of course, beyond this short review, the analysis

can be extended comparing more complexity metrics discussed in

the previous section and analyzing many more compound datasets.

As stated above, herein we selected a number of complexity metrics

of easy access for the drug discovery community.

Compound selectivity
As reviewed above, one of the major interests to quantify molecu-

lar complexity in drug development campaigns is to find relation-

ships between this molecular feature with compound selectivity.

In this subsection we explored such associations with two inde-

pendent sets of compounds annotated with biological informa-

tion for a number of biological endpoints: Clemons’ and ToxCast

datasets. In contrast to Clemons’ study [3], we survey the effect of

using different complexity metrics. By analogy with the work of

Clemons et al. (see above), compounds in both datasets were

classified in three categories based on the relative distribution

of the complexity values: (i) simple: if complexity � mean � 1

standard deviation (SD); (ii) intermediate: if mean � 1 SD < com-

complexity < mean + 1 SD; and (iii) complex: if complexi-

ty � mean + 1 SD. Similarly, compounds were also classified into

four categories based on bioactivity data: (i) compounds inactive

in all assays; (ii) active in only one assay; (iii) active in 2–5 assays;

and (iv) active in six or more assays. Fig. 1 summarizes the results of

the molecular complexity measured for the Clemons’ and ToxCast

sets using four metrics outlined above: PubChem Complexity,

DataWarrior Complexity, Fsp3 atoms and fraction of chiral atoms

– the pie charts summarize the distribution of compounds consid-

ering activity and selectivity.

The results in Fig. 1 are in agreement with the trends observed in

the Clemons publication, in that simple compounds (based on

fraction of chiral atoms) tend to be more promiscuous (active in six

or more assays) compared with complex molecules. Similar results

were obtained for the ToxCast set, where 450 simple compounds

were active in more than six assays; by contrast only 22 complex

compounds presented a similar degree of promiscuity. A similar

trend (less complex compounds are more promiscuous than simple

molecules) can be observed for both datasets when fraction of sp3

carbons was used as the complexity metric. However, results

obtained with the complexity values computed in PubChem and

DataWarrior slightly differ from the ones obtained with fraction of

chiral and sp3 atoms. In particular, PubChem and DataWarrior

complexity metrics suggest that complex compounds are less pro-

miscuous for Clemons’ data (108 and 110 compounds, respective-

ly), but more-promiscuous for ToxCast (249 and 285 compounds,

respectively) compared with simple compounds. As discussed be-

low, these results are a consequence of the metric complexity and

how compounds were classified as simple or complex.

Compound classification: the importance of using a reference
dataset
In general, assessing whether a compound is ‘complex’ or ‘simple’

is a difficult task because complexity is a subjective concept and it

http://www.chemdiv.com/products/beyond-flatland-library/
http://www.chemdiv.com/products/beyond-flatland-library/
http://lifechemicals.midnighters.eu/screening-libraries/fragment-libraries/fsp3-enriched-fragment-library
http://lifechemicals.midnighters.eu/screening-libraries/fragment-libraries/fsp3-enriched-fragment-library
http://www.princetonbio.com/products/targeted_bbl
http://www.princetonbio.com/products/targeted_bbl
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pcassay%26term=Tox21
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pcassay%26term=Tox21
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pcsubstance%26term=MLSMR
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pcsubstance%26term=MLSMR
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FIGURE 1

Molecular complexity measured for the Clemons and ToxCast sets using four metrics.
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is usually based on comparisons. Many studies using complexity

metrics classify compounds into complex or simple by using

arbitrary cutoffs or by comparing the complexity of each com-

pound to other molecules in the dataset (as in Clemons’ study and

the survey discussed in the previous section). In general, based on

the findings of our survey above, the use of complexity cutoff

values is not advisable unless they are well supported by previous

knowledge or evidence. For example, the distribution of complex-

ity values of a large compound database can be used as reference.

Nevertheless, this potential solution should be implemented with

caution addressing the questions: is the dataset large enough to

make a fair judgment of complexity and how can the results

obtained with one dataset be compared with a different set of

molecules? For instance, Fig. 2 depicts the complexity distribu-

tions of four reference datasets (Clemons, ToxCast subset, MLSMR

and DrugBank) using four complexity metrics. It can be seen that,

in general, the four datasets have different distributions for each

complexity metric except for the fraction of chiral centers (FCC)

where all datasets presented complexity values close to zero. This is

not surprising because most compounds have few stereo-centers to

facilitate the chemical synthesis. It is noteworthy that the ToxCast

subset and the Clemons dataset presented different distributions

of PubChem and DataWarrior complexity metrics. More specifi-

cally, the Clemons dataset contains more complex compounds
than ToxCast. This fact directly affects compound classification

and cross-comparison between datasets. For instance, if com-

pounds are classified based on the absolute distribution of com-

plexity values in each dataset, the most complex compounds of

the ToxCast subset have complexity values similar to the ones

presented by the regarded simple compounds of the Clemons

dataset. Of note, the conclusions obtained from the study will

be valid only for the specific dataset and can be generally applica-

ble if the dataset is large enough. Therefore, as a workaround of

issues associated with discrepancies in classification (e.g., high,

medium, low complexity), it is proposed to classify compounds

based on the distribution of complexity values of a large and

comprehensive dataset as reference. The selection of the reference

dataset will depend on the goals of the study and the type of

molecules being analyzed. For example, in a drug discovery project

that involves typical drug-like compounds, MLSMR and/or a col-

lection of approved drugs such as DrugBank are suitable reference

databases because they are large and diverse collections available

in the public domain.

Relationship between complexity metrics
As discussed above, it is remarkable the broad range of metrics used

to assess molecular complexity. This raises the question: are dif-

ferent complexity metrics giving the same information? As a
www.drugdiscoverytoday.com 123
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FIGURE 2

Complexity distributions of four reference datasets using four complexity metrics.
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contribution to address this question in this short survey we

compared the complexity values of four different metrics (see

above) computed for a large and diverse set. In this survey, MLSMR

was used as a case study. As mentioned above, MLSMR is a large

(>400 000 small molecules), diverse and publicly available dataset.

Fig. 3 shows density plots of all six pair-wise comparisons of the

four different metrics of complexity. The density of data points is

represented using a continuous color scale from yellow (most

populated region) to gray (least populated). At a glance, Fig. 3

indicates that the metrics have no correlation. In particular,

metrics specially designed to capture the whole complexity of a

molecule (e.g., PubChem and DataWarrior complexity) did not

correlate with metrics typically used to measure complexity, such

as FCC and Fsp3. For example, compounds with high FCC values

are associated with low PubChem complexity values, whereas the

same molecules have high DataWarrior complexity (see Figure S1

in the supplementary material online). This suggests that each of

these complexity metrics are capturing different information: a

compound classified as complex with one metric can be regarded

as simple with the other. In other words, there is a dependence of
124 www.drugdiscoverytoday.com
molecular complexity with the metric used to quantify it. These

results suggest that molecular complexity cannot be defined by a

single or individual property, but instead it should be associated to

a group of properties. This problem is related to molecular repre-

sentation using structural fingerprints: a single fingerprint cannot

capture all the information of a molecule [35]. In analogy with

molecular fingerprints, it is suggested to measure molecular com-

plexity as a combination of complexity metrics [36–40].

Beyond drug discovery
The relevance and possible application of molecular complexity is

not restricted to drug discovery and has been noted by researchers

in different fields. A novel and interesting application is the

association of complexity with sensorial responses such as olfac-

tory notes [41]. An original paper by Kermen et al. describes the

quantitative structure–odor relationship using molecular com-

plexity. Authors of that work showed that more-complex struc-

tures (as measured using PubChem complexity) evoke more

numerous olfactory notes. Although molecular complexity cannot

distinguish between functional groups or different smells, it was
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FIGURE 3

Density plots of all six pair-wise comparisons of the four different metrics of complexity computed for the Molecular Libraries Small-Molecule Repository (MLSMR).

The density of data points is represented with a continuous scale from more-dense (orange) to less dense (gray).
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correlated with the number of notes and odor pleasantness. It is

worth noting that the neural mechanism by which molecular

complexity is associated with olfactory notes remains unknown

given the intricacy of the olfactory system. One of the hypotheses

is that high complexity odorants activate more types of olfactory

receptor than low complexity odorants [41], which contrasts with

different complexity–selectivity studies (see above) [2,3]. An alter-

native explanation is the known relationship between complexity

metrics and physicochemical properties such as logP or solubility

[1,23], because they have been associated with structure–odor

relationships and odor intensity [42–44].

Concluding remarks
Throughout this review we highlighted the importance of molec-

ular complexity for drug design and development. Although there

is not an absolute definition of complexity different metrics have

been developed to apply the complexity concept in numerous

drug discovery situations. However, the broad range of approaches

to quantify molecular complexity can lead to different pitfalls. To

avoid these pitfalls it is advised to: (i) use a large and diverse

reference dataset when labeling compounds as complex instead of

using arbitrary cutoffs; and (ii) apply more than one complexity

metric to reduce the dependency of the conclusions on how

complexity is measured.
Quantification of molecular complexity and its use in drug

discovery is not a fully solved problem and it is in continued

development. For instance, a comprehensive research study ana-

lyzing multiple reference collections with multiple complexity

metrics is yet to be conducted (including many more than the

four used in this short review). It also remains to investigate

different ways to combine the complexity metrics to develop

robust consensus measures of complexity. In our opinion, most

of the questions that remain unanswered are associated with the

‘best’ way to measure molecular complexity and how to interpret

the results for specific purposes. For example, find a concrete

complexity predictor to guide the design of new molecules, iden-

tify the ideal range of complexity values for drug development,

determine whether the conclusions obtained from complexity

indices are universal or if they are target or case-dependent, and

develop a global molecular complexity metric. As discussed in this

review, there has been significant progress to advance the field of

molecular complexity including uses in different areas such as

library design and target selectivity, among others. However, there

is still a long way to go.
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