
95

Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, USA
*Corresponding author: Phone: +1-772-345-4685, Fax: +1-772-345-3649, E-mail: jose.medina.franco@
gmail.com.
Current address: Mayo Clinic, Scottsdale, Arizona 85259, USA. E-mail: MedinaFranco.Jose@mayo.edu

ADVANCES IN COMPUTATIONAL APPROACHES FOR DRUG 
DISCOVERY BASED ON NATURAL PRODUCTS

José L. Medina-Franco*
(Received May 2013; Accepted July 2013)

ABSTRACT

Drug discovery based on natural products has a long successful history. To further 
advance the identification of new drugs from compounds of natural origin, natural 
product research is increasingly being combined with computer-aided drug design 
techniques. Herein, we review the recent advances in the application of chemoin-
formatics methods to quantify the chemical diversity and structural complexity of 
natural products and analyze their distribution in chemical space. We also discuss 
the progress in virtual screening to systematically identify bioactive compounds 
in natural products databases and the advancement of target fishing methods to 
uncover molecular targets of compounds from natural origin. www.relaquim.com

Key words: chemical space, chemoinformatics, compound databases, diversity 
analysis, docking, molecular modeling, target fishing, virtual screening.

RESUMEN

La identificación de fármacos basado en productos naturales tiene una larga 
historia de éxitos. Para incrementar el progreso del descubrimiento de fármacos 
de compuestos de origen natural, la investigación de productos naturales se está 
integrando cada vez más con técnicas empleadas en diseño de fármacos asistido 
por computadora. En este trabajo se hace una revisión de los avances recientes en 
la aplicación de métodos quimionformáticos para cuantificar la diversidad química 
y complejidad estructural de productos naturales y su distribución en el espacio 
químico. También se discute el progreso en el cribado virtual para identificar en 
forma sistemática compuestos bioactivos en bases de datos de productos naturales 
y métodos de búsqueda de dianas moleculares para revelar blancos moleculares 
de compuestos de origen natural. www.relaquim.com

Palabras clave: espacio químico, quimioinformática, bases de datos moleculares, 
análisis de la diversidad, acomplamiento molecular, modelado molecular, cribado 
virtual de dianas moleculares, cribado virtual de compuestos
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INTRODUCTION

Computational approaches commonly used 
in computer-aided drug design (CADD) 
have made significant contributions to the 
different stages of drug discovery. Advances 
in this filed have been reviewed recently 
in a number of publications (Xiang et al., 
2012, Chen et al., 2012c, Ou-Yang et al., 
2012). CADD includes several methodo-
logies that can be classified in two major 
groups depending on the availability of the 
three dimensional coordinates of the target 
(Medina-Franco et al., 2006), namely struc-
ture-based and ligand-based approaches. 
The reader is referred to recent reviews of 
the contributions of specific computational 
approaches to drug discovery including 
molecular dynamics (Durrant and Mc-
Cammon, 2011), pharmacophore modeling 
(Sanders et al., 2012), chemoinformatics 
(Duffy et al., 2012), treatment of receptor  
flexibility to model biomolecular recognition 
(Sinko et al., 2013) and small molecule and 
protein-protein docking (Yuriev and Ram-
sland, 2013, Bienstock, 2012). Successful 
contributions of CADD to research projects 
have been encouraged by the increasing 
number of software, databases, and onli-
ne tools available for medicinal chemists, 
biologists, and the research community in 
general (Liao et al., 2011).

Natural products have a rich history 
in drug identification and development 
(Newman, 2008, Ganesan, 2008, Lachance 
et al., 2012). For a long time, around 80% 
of drugs found their sources directly in 
natural products or compounds inspired 
by natural sources. It has been reported 
that, since 1994, 50% of the approved 
drugs have roots on natural products 
(Clark et al., 2010, Li and Vederas, 2009). 
The broader coverage of chemical space of 
natural compounds as compared to synthe-
tic molecules gives an advantage to the 
former to identify novel structural classes 
(Harvey, 2008, Bohlin et al., 2010). Tradi-
tionally, identifying active compounds from 

natural products rely on the experimental 
evaluation of natural products in a set of 
biological assays available. Despite the fact 
that this approach has given rise to the 
successful identification of lead compounds 
and approved drugs discussed above, it is 
anticipated that combining computational 
approaches with experimental-based na-
tural product research will enhance the 
success rate. In this regard, Barlow et al. 
reviewed the integration of in silico studies 
with Chinese herbal medicine’s research 
(Barlow et al., 2012). The synergy between 
other well-established drug discovery ap-
proaches such as virtual screening and 
combinatorial chemistry have been discus-
sed elsewhere (López-Vallejo et al., 2011).

In this manuscript, we review the ad-
vances in the integration of CADD with 
natural products research. The review is 
organized in two major sections. The first 
one is focused on computational analy-
sis of natural products databases using 
chemoinformatics methods. This section 
covers sources of compound databases and 
summarizes recent examples of the quan-
titative measure of structural diversity, 
complexity, profile of physicochemical pro-
perties and distribution in chemical space 
of natural products. The second section is 
dedicated to the progress of computational 
approaches for natural product-based drug 
discovery with emphasis on virtual scree-
ning to identify active molecules for mole-
cular targets and target fishing to uncover 
putative targets for natural products.

CHEMOINFORMATIC APPROACHES

‘Chemoinformatics’ also called ‘cheminfor-
matics’ or ‘chemical information science’ 
has various definitions, for example, ‘the 
application of informatic methods to solve 
chemical problems’ (Engel, 2006). Varnek 
and Baskin (Varnek and Baskin, 2011) 
and Willet (Willett, 2011) reviewed other 
definitions. Chemoinformatics comprises 
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a plethora of computational techniques to 
organize, mine, visualize, and analyze the 
diversity and coverage of the chemical spa-
ce of compound collections. The reader is 
referred to other reviews of chemoinforma-
tic methods commonly used in the indus-
try, academia and other research groups 
for lead identification and development and 
analysis of chemical databases (Duffy et al., 
2012, Medina-Franco, 2013). In the next 
following sub-sections we will review the 
progress of major chemoinformatic-related 
areas of natural product research focused 
on lead identification.

Chemical databases of natural products
Compound databases represent a major 
source for storage, mining and sharing of 
chemical information, in some cases, in-
cluding biological information. The source 
and impact on chemical databases on drug 
discovery is extensively discussed elsewhe-
re (Scior et al., 2007, Barbosa and Del 
Rio, 2012). Clark et al. published diverse 
initiatives developed in various countries 
including France, Australia and Japan to 
foster drug discovery collaborations with 
academic groups (Clark et al., 2010). In 
addition to commercial sources of com-
pounds for computational screening there 
are publicly available large compounds da-
tabases annotated with biological activity. 
Perhaps the most representative examples 
are PubChem, ChEMBL and Binding Data-
base (Nicola et al., 2012). 

Yongye and Medina-Franco recently 
compiled a list of five natural products 
databases whose structures are readily 
accessible on the web (Yongye et al., 2012). 
Such databases contain between 560 and 
89000 compounds and the numbers are 
growing. The large and commonly used 
ZINC database (at the time of writing, May 
2013, it contains over 19 million molecules) 
includes major subsets of natural products 
(Irwin and Shoichet, 2005).

The Traditional Chinese Medicine (TCM) 
database is one of the major sources of na-

tural products freely available online (Chen, 
2011). This database has been extensively 
analyzed in terms of physicochemical pro-
perties and chemical space coverage (see 
below) (López-Vallejo et al., 2012). Based on 
this database, the cloud-computing system 
iScreen was developed. This is a web server 
for docking TCM followed by customized 
de novo drug design (Tsai et al., 2011). iS-
creen is available at http://iScreen.cmu.
edu.tw/. TCM has been used successfully 
to identify pancreatic triacylglycerol lipase 
inhibitors using in-silico approaches (Chen 
et al., 2012b).

A second major source of natural pro-
ducts freely available online is the Universal 
Natural Products Database (UNPD) deve-
loped by Gu et. al (Gu et al., 2013). UNPD 
available at http://pkuxxj.pku.edu.cn/
UNPD is comprised of 197201 compounds 
obtained from plants, animals and microor-
ganisms. The physicochemical properties 
of this database have been analyzed. The 
physicochemical properties were employed 
as a basis to generate a visual comparison 
of the chemical space covered by UNPD 
and drugs concluding that there is a large 
overlap (Gu et al., 2013).

In Mexico, Esquivel and colleagues at 
the Informatics Unit of the Chemistry Insti-
tute of the National Autonomous University 
of Mexico (UNIIQUIM / UNAM for the name 
in Spanish) is building a comprehensive 
database of natural products that have 
been published by the Chemistry Institute 
of UNAM. It is estimated that the database 
will have information for more than 3000 
chemical substances isolated and charac-
terized. The database is freely searchable 
at http://uniiquim.iquimica.unam.mx. 

In Brazil, Valli et al. developed the Nu-
BBE database which is a web-based data-
base available at http://nubbe.iq.unesp.
br/nubbeDB.html that includes secondary 
metabolites and derivatives from Brazil 
(Valli et al., 2013). Currently, the database 
contains 640 compounds collected from 
170 scientific publications by the Nuclei of 
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Bioassays, Biosynthesis and Ecophysiology 
of Natural Products (NuBBE) group. The 
database will be constantly updated with 
upcoming information (Valli et al., 2013).

Table 1 summarizes selected chemical 
databases of natural products that can be 
searched online or whose structures can be 
downloaded. The table focuses on collec-
tions recently published. Other compound 
collections are comprehensively reviewed 
elsewhere (Clark et al., 2010, Barlow et al., 
2012, Yongye et al., 2012). 

Diversity and structural complexity analysis
Quantitative analysis of the structural 
diversity of compound databases is im-
portant because it provides insights to 
prioritize library or sub-library selection 
for experimental screening. In particu-
lar, diversity analysis helps to assess the 
structural novelty of a compound collection 
(Medina-Franco, 2012). If the purpose of a 
screening project is to identify novel lead 
compounds then it is desirable to screen a 
collections with chemically diverse struc-
tures to increase the likelihood to identify 
novel scaffolds that may become leads. 

This is commonly known as sampling a 
diverse region of chemical space (Medina-
Franco, 2012). However, if the purpose of 
the screening campaign is to optimize one 
or more specific chemical scaffolds, then it 
is desirable to explore dense regions of che-
mical space, e.g. screening combinatorial 
libraries (Houghten et al., 2008).

There are at least two major approaches 
to assess the structural diversity. One of 
them is based on structural fingerprints 
for example using molecular fragments 
or pharmacophoric features. The second 
approach uses chemical scaffolds that 
are an intuitive way to represent chemical 
structures (Brown and Jacoby, 2006). The 
structural diversity of natural products da-
tabases either using structural fingerprints 
and molecular scaffolds have been reported 
and reviewed in several works (Koch et al., 
2005, Ertl et al., 2008, Singh et al., 2009, 
Chen et al., 2012a). For example, Yongye 
and Medina-Franco reported a scaffold-
based analysis of five natural products 
collections whose chemical structures are 
available in the public domain (Yongye et 
al., 2012). The natural products libraries 

Table 1. Representative examples of databases of natural products integrated in Latin America and 
other countries.
Compound collection Description URL / Ref.
UNIIQUIM database More than 3000 com-

pounds collected from pu-
blications of the Chemistry 
Institute, UNAM in Mexico

http://uniiquim.iquimica.unam.mx

NuBBE database Approximately 640 com-
pounds collected from 
publications of the NuBBE 
group in Brazil

http://nubbe.iq.unesp.br/nubbeDB.html
(Valli et al. 2013)

Universal Natural Pro-
ducts Database (UNPD)

Repository assembled 
in China with 197201 
compounds obtained from 
other natural product da-
tabases.

http://pkuxxj.pku.edu.cn/UNPD
(Gu et al., 2013)

Traditional Chinese Me-
dicine (TCM) database @ 
Taiwan

Database with 37,170 
(32,364 non-duplicate) 
TCM compounds from 352 
TCM ingredients.

http://tcm.cmu.edu.tw
(Chen, 2011)
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were compared with a general screening 
collection and natural products libraries 
frequently used in in vivo screening. It 
was concluded that the general screening 
library had the largest scaffold diversity. 
Other than the benzene and acyclic mole-
cules, flavones, coumarins, and flavanones 
were identified as the most frequent sca-
ffolds across the various natural products 
databases (Medina-Franco et al., 2013).

Structural complexity
The concept of structural complexity has 
broad implications because there is eviden-
ce that the increased structural complexity 
is associated with increased structural spe-
cificity. As commented elsewhere (López-
Vallejo et al., 2012) Dandapani and Mar-
caurelle pointed out that natural products 
have larger structural complexity than 
commercially available compounds as mea-
sured by the fraction of saturated carbons 
(Dandapani and Marcaurelle, 2010). Cle-
mons et al. reported an experimental pro-
file of more than 15000 compounds tested 
with 100 diverse proteins. The compound 
libraries included molecules from natural 
origin and synthetic analogues, commercial 
compounds and molecules synthesized by 
academic groups. As a result he concluded 
that indeed increasing molecular complexi-
ty enhance selectivity and frequency of bin-
ding (Clemons et al., 2010). In a follow up 
study Yongye and Medina-Franco reported 
a chemoinformatic analysis of the Clemons’ 
data set using SPID (Structure-Promiscuity 
Index Difference), a measure designed to 
rapidly capture large changes in binding 
profiles due to small changes in molecu-
lar structure. That study revealed that, in 
general, similar synthetic structures from 
academic groups showed greater promis-
cuity differences than do natural products 
and commercial compounds (Yongye and 
Medina-Franco, 2012).

In a separate work, it was demonstra-
ted quantitatively the increased structu-
ral complexity of natural products in the 

TCM database (see above) as compared to 
commercially available databases. In that 
study it was found that a set of combina-
torial libraries that occupy a more dense 
region in chemical space than TCM (i.e., 
they have less structural diversity), also 
have large structural complexity. The major 
outcome of that analysis was that natural 
products from TCM along with combinato-
rial libraries analyzed in that work are good 
candidate libraries to expand the medici-
nally relevant chemical space as defined by 
currently approved drugs (López-Vallejo et 
al., 2012). 

Profile of physicochemical properties
Physicochemical profiling of compound 
datasets is at the core of currently many 
empirical rules that try to define drug- and 
lead-likeness. A prominent example of such 
empirical rule is the Lipinski’s Rule of Five 
(Lipinski et al., 1997) that has been largely 
revised over the past recent years (Leeson 
and Davis, 2004, Faller et al., 2011, López-
Vallejo et al., 2012). Several studies have 
addressed the analysis of the distribution 
of physicochemical properties of different 
natural products databases (Feher and 
Schmidt, 2003, Singh et al., 2009, Medina-
Franco et al., 2012). One of the classical 
examples is the work of Feher et al. that 
compared more than 40 molecular proper-
ties of natural products assembled from 
various sources, drugs and compounds 
obtained from combinatorial chemistry. It 
was concluded that natural products di-
ffer from combinatorial compounds in the 
number of chiral centers, aromatic rings, 
number of complex ring systems, degree of 
saturation of the molecule and the number 
and ratios of various heteroatoms (Feher 
and Schmidt, 2003).

More recently, Medina-Franco et al. 
compared the physicochemical proper-
ties of natural products collections with 
chemical structures freely available with 
more than 2000 food materials designated 
as ‘‘Generally Recognized as Safe’’ (GRAS) 
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(Medina-Franco et al., 2012). Authors 
concluded that natural products collec-
tions obtained from different sources have 
different distributions of physicochemical 
properties and structural diversity in sup-
port of previous conclusions derived from 
the scaffold analysis of the same databa-
ses (Yongye et al., 2012). It was also found 
that the GRAS compounds analyzed in 
that work have a high structural diversity, 
comparable to the high structural diversity 
of natural products and other reference 
libraries (Medina-Franco et al., 2012).

Manallack et al. carried out an analysis 
of the distribution of ionization constants 
of 89425 natural products available in 
ZINC for purchase and testing (Manallack 
et al., 2013b). The profile was compared 
to other screening collections available in 
ZINC, drugs and a chemogenomics data 
set. In that study authors found that na-
tural products have different distribution 
of ionization constants than other scree-
ning collections e.g. higher proportions 
of complex ionizable compounds and a 
greater number of zwitterionic molecules. 
However, natural products from ZINC have 
some overlap with approved drugs. The dis-
tribution of pKa values of single acids and 
single bases in natural products were more 
similar to drugs than screening compounds 
(Manallack et al., 2013b). In a follow-up 
work Manallack et al. performed a similar 
characterization of the acid/base profile 
of 25566 natural products obtained from 
ChEMBL (Manallack et al., 2013a). In the 
later study, the profile was compared with 
human small molecule metabolites. 

Visualization of the chemical space
Chemical space has several definitions. 
For example, Dobson defines the chemical 
space as ‘the total descriptor space that en-
compasses all the small carbon-based mo-
lecules that could in principle be created’ 
(Dobson, 2004). In a more intuitive concept 
of space Lipinski and Hopkins mention that 
‘chemical space can be viewed as being 

analogous to the cosmological universe 
in its vastness, with chemical compounds 
populating space instead of stars’ (Lipinski 
and Hopkins, 2004).

The concept of chemical space has a 
major role in drug discovery projects since 
it helps to classify and compare compound 
data sets. This concept is also commonly 
used in library design and compound se-
lection for experimental testing (Reymond 
et al., 2010, Medina-Franco et al., 2008). 
Data visualization has an important role 
to rapidly mine the constantly increasing 
information available for drug discovery. 
There are several established methods 
to visualize the chemical space (Medina-
Franco et al., 2008) and recent advances 
in the visualization of chemogenomics data 
sets have been reviewed (Medina-Franco 
and Aguayo-Ortiz, 2013). 

A visual representation of the chemical 
space covered by TCM was reported using 
principal component analysis of six drug-
like physicochemical properties (López-
Vallejo et al., 2012). It was clear in that 
work that TCM occupy a different region 
of chemical space occupied by currently 
approved drugs. In a separate analysis, the 
chemical space of natural products from a 
commercial vendor was visualized with the 
space covered by GRAS compounds using 
self-organizing-maps (Medina-Franco et 
al., 2012).

Gu et al. generated a visual representa-
tion of the chemical space covered by the 
UNPD (discussed above) with FDA-appro-
ved drugs. A three-dimensional represen-
tation of the chemical space was generated 
using principal component analysis of 15 
molecular descriptors (Gu et al., 2013). This 
representation clearly showed the large 
diversity of UNPD and the overlap of this 
database with the chemical space of drugs.

To illustrate the visualization of chemi-
cal space, Figure 1 shows a visual repre-
sentation of the chemical space of 1000 
approved drugs obtained from DrugBank 
database (http://www.drugbank.ca/) (dark 
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spheres) and 997 compounds randomly 
selected from the TCM database using 
molecular properties (light gray spheres). 
The visualization was generated using the 
online tool ChemGPS-NPWeb (Larsson et al., 
2007, Rosen et al., 2009). ChemGPS-NP 
(Larsson et al., 2005, Larsson et al., 2007) 
is a global chemical positioning system ba-
sed on principal component analysis (PCA) 
(Oprea and Gottfries, 2001) and it is sui-
ted for exploration of biologically relevant 
chemical space. The first four dimensions 
of the ChemGPS-NP plot preserve 77% of 
data variance. The first dimension (PC1) 
represents size, shape and polarizability 
(main contribution is size); PC2 is associa-
ted with aromatic and conjugation related 
properties (main influence is aromaticity); 
PC3 describes lipophilicity, polarity, and 
H-bond capacity (major contribution is lipo-
philicity); and PC4 expresses flexibility and 
rigidity. Chemical compounds can be po-
sitioned onto this map using interpolation 
using PCA score prediction.  More details 
of this approach as described elsewhere 
(Rosen et al., 2009). Figure 1 shows that 

TCM and drugs have a partial overlap in the 
property space. The figure also shows the 
large property diversity of TCM. ChemGPS-
NPWeb has recently been used to compare 
the chemical space of drugs with in-house 
combinatorial libraries (Medina-Franco and 
Waddell, 2012).

MOLECULAR MODELING

There are numerous molecular modeling 
studies focused on the elucidation of the 
activity of bioactive natural products, e.g., 
docking of individual compounds with a 
particular molecular target. An illustra-
tive example is the analysis of the bin-
ding mode of curcumin, pathenolide, and 
(-)-epigallocathechin-3-gallate with the 
enzyme DNA methyltransferase (DNMT), a 
major epigenetic target for the treatment 
of cancer and other diseases (Yoo and 
Medina-Franco, 2011, Yoo and Medina-
Franco, 2012). Structure-based pharma-
cophore modeling and docking of natural 
products have been extensively used to 
identify key protein-ligand interactions 
that can be used for the optimization of 
DNMT inhibitors. Other molecular mode-
ling studies of active natural products with 
diverse molecular targets are continuously 
performed (El-Elimat et al., 2013, Ramírez-
Espinosa et al., 2013). Geldenhuys et al. 
recently reviewed the role of resveratrol, 
curcumin, caffeine, and genestein as star-
ting compounds for molecular modeling 
studies (Geldenhuys et al., 2012).

In the following sub-sections we focus 
the application of molecular modeling to 
identify compounds from natural origin for 
a target of interest (using virtual screening) 
and elucidate potential molecular targets 
of natural products (using target fishing). 
Virtual screening and target fishing are two 
broad techniques that have been recently 
discussed in an integrated manner with 
other concepts relevant to chemogenomics 
(Medina-Franco et al., 2013).

Figure 1.  Visualization of the chemical space of 
approved drugs (dark spheres) and natural products 
from the Traditional Chinese Medicine (TCM) data-
base (light gray spheres). The map was produced 
using the the ChemGPS-NP prediction scores com-
puted using the tool ChemGPS-NPWeb.
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Virtual screening
Since systematic experimental screening of 
large chemical databases is a time consu-
ming and expensive process, computatio-
nal (in silico or virtual) screening is used 
as means to filter compound databases 
to select compounds for biological testing 
(Scior et al., 2012). The type of libraries that 
can be screened are collections of molecu-
les physically available for experimental 
testing or virtual libraries. In the second 
case, the computational hits are selected 
for synthesis and then testing. Ideally, 
virtual screening should be part of an ite-
rative process that involves the prediction, 
experimental testing of selected compounds 
and design of new chemical data sets based 
on the structure of the experimental hits. 
The new molecules can be designed using 
a combination of medicinal chemistry and 
computational tools. Although it is highly 
desirable to identify potent compounds in 
the first round of virtual screening and ex-
perimental testing, the major goal of the ini-
tial screening is to identify hit compounds 
with novel chemical scaffolds for later 
optimization (Muegge, 2008). The method 
or series of approaches to conduct virtual 
screening can be divided in two major 
groups, structure-based and ligand-based, 
depending on the experimental informa-
tion available. Ligand-based approaches 
utilize structure-activity data of a set of 
known actives. Structure-based methods 
use the three-dimensional structure of 
the biological target. Whenever possible, 
it is recommended to use a combination 
of ligand- and structure-based methods. 
The interested reader is directed to ex-
tensive reviews of virtual screening that 
include methods, successful applications,  
pitfalls and workarounds (Shoichet, 2004, 
Villoutreix et al., 2009, Ripphausen et al., 
2011, López-Vallejo et al., 2011, Guido 
et al., 2008, Muegge, 2008, Scior et al., 
2012). Advances in the virtual screening 
of virtual compounds have been reviewed 
by Reymond et al. (Reymond and Awale, 

2012). Ma et al. have reviewed the synergy 
between structure-based virtual screening 
and drug repurposing (Ma et al., 2013).

A recent example of successful virtual 
screening using natural product databa-
ses is exemplified by the work of Cao et 
al. (Cao et al., 2013). In that work, the 
authors conducted virtual screening of an 
in-house collection with more than 4000 
natural products isolated from 100 me-
dicinal plants. The collection was docked 
into the ligand binding domain of estrogen 
receptors (ER) ERα and ERβ using the 
program Glide. As a result, eleven natural 
non-steroidal ER modulators were identi-
fied (Cao et al., 2013).

Guasch et al. identified five peroxisome 
proliferator-activated receptors, PPARγ 
partial agonists from a pool of more than 
89000 natural products and natural pro-
ducts derivatives from ZINC (Guasch et al., 
2012). In that work, the initial database 
was filtered sequentially using ADMETox 
filters, structure-based pharmacophore 
screening, molecular docking, electrostatic, 
and fingerprint-based similarity analysis. 
Ten compounds were selected for in vitro 
validation assays and half of the molecules 
showed activity (Guasch et al., 2012).

There are comprehensive virtual scree-
ning studies of compound databases that 
strongly suggest activity of natural products 
as lead compounds. In one study, Medina-
Franco et al. conducted the docking-based 
virtual screening of a lead-like set of natural 
products with a validated homology model 
of the catalytic domain of human DNMT1 
(Medina-Franco et al., 2011). A multi-step 
docking approach was implemented using 
first fast docking-based protocols with 
Glide high-throughput virtual screening 
and Glide Standard Precision. Then, a pa-
rallel docking protocol was implemented 
using three different docking programs, 
namely Glide Extra Precision, Genetic Op-
timization for Ligand Docking (GOLD) and 
Autodock. Consensus hits e.g., top ranked 
compound by all three docking programs, 



Advances in computational approaches for drug discovery based on natural products 	 Rev. Latinoamer. Quím. 41/2(2013)  103

were selected as promising candidates for 
experimental testing. Interestingly, one of 
the computational hits was already experi-
mentally reported to be an actual inhibitor 
(Kuck et al., 2010), thus validating the 
computational approach (Medina-Franco 
et al., 2011). 

A second example of a recent study is 
given by the work of Ngo et al. that predic-
ted the binding affinity of 342 molecules 
obtained from Vietnamese plants to the 
full-length amyloid Aβ1–40 and Aβ1–42 pepti-
des and their mature fibrils. The authors 
used a combination of docking using the 
program Autodock Vina, and molecular 
dynamics. It was concluded that five natu-
ral are promising candidates for the deve-
lopment of molecules to treat Alzheimer’s 
disease (Ngo and Li, 2013).

As illustrated above, many researchers 
use in-house, commercial or non-commer-
cial computational tools to screen existing 
natural products databases with a molecu-
lar target of interest. Particularly attractive 
for experimental; groups an alternative to 
conduct computational screening of com-
pound databases is to establish collabora-
tions with expert computational groups to 
conduct the screening. In natural products 
research a remarkable example is the Drug 
Discovery Portal (DDP). This initiative is 
hosted at the University of Strathclyde and 
it is intended to improve drug discovery 
collaborations between academic groups of 
chemists and biologists (Clark et al., 2010). 
At the same time, DDP seek to preserve the 
intellectual property rights. This initiative 
provides the service to conduct the in-silico 
screening of collections available at DDP. 
In addition, DDP can provide to the colla-
borator with physical samples of the com-
putational hits for experimental testing. 

Target fishing and reverse pharmacognosy
As reviewed above, virtual screening aims 
to identify new ligands for known targets. 
The inverse approach i.e., identify putative 
targets for known ligands, is referred in the 

literature as target fishing (Rognan, 2010). 
Thus, virtual screening is related to ligand 
screening and target fishing is associated 
with ligand profiling (Jacoby, 2011). Simi-
lar to virtual screening, depending on the 
experimental information available, target 
fishing can be performed using structure-
based methods e.g., inverse docking, or 
ligand-based methods e.g., similarity sear-
ching (Nettles et al., 2006, AbdulHameed 
et al., 2011) or both. 

Yue et al. have reviewed advances in 
the target profiling of natural products 
using experimental (genomics and proteo-
mics) and computational approaches (Yue 
et al., 2012). In that rich review, authors 
emphasize the need of integrating various 
techniques including docking compounds 
across different targets (inverse docking), 
mapping ligand-target profiling space, and 
network analysis (Yue et al., 2012). 

Drug-target interaction networks is at 
the core of target fishing as it is an ap-
proach that has been successfully used 
to predict putative targets based on the 
chemical similarity of the known ligands 
(Keiser et al., 2009, Besnard et al., 2012, 
Cheng et al., 2013). In a short but insightful 
review Gertsch highlights the relevance of 
analyzing ligand-target networks for bota-
nical drugs (Gertsch, 2011).

Gu et al. (Gu et al., 2011) conducted the 
virtual screening of 676 compounds from 
the TCM database with 37 proteins related 
to type II diabetes mellitus. Interaction net-
works were used to link compounds with 
proteins based on the docking score results. 
Authors elucidated the action mechanism 
of a medical composition which had clinical 
efficacy for type II diabetes mellitus (Gu et 
al., 2011). More recently, the same authors 
dock the UNPD (see above) with 332 mole-
cular targets of FDA-approved drugs (Gu 
et al., 2013). Based on the docking scores 
and the natural product-target networks 
the most promising natural products for 
drug discovery in UNPD were selected (Gu 
et al., 2013).
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As part of the FoodInformatics sympo-
sia held at the 245th American Chemical 
Society National Meeting in 2013 (Martínez-
Mayorga et al., 2013), Quoc-Tuan Do ex-
plained the principles of the concept reverse 
pharmacognosy (Blondeau et al., 2010) 
emphasizing the many roles of chemoin-
formatic approaches, including inverse 
screening, to accelerate the identification 
of the bioactive compounds of an organism. 
During the symposia Quoc-Tuan discussed 
two successful and published examples of 
reverse pharmacognosy using SelnergyTM, a 
platform developed in Greenpharma to pre-
dict, based on docking, interaction energies 
of a ligand with a target protein (Do et al., 
2007, Bernard et al., 2008).

CONCLUSIONS

Natural products have been a major compo-
nent in drug discovery providing, for many 
years, lead compounds approved for clinical 
use and inspiring the synthesis of chemical 
libraries. The synergy of experimental natu-
ral products research with computational 
approaches is increasing. Chemoinformatics 
methods have been able to characterize the 
chemical space of public and commercially 
available natural products databases com-
paring their molecular properties, inclu-

ding structural complexity, and structural 
diversity with approved drugs and other 
screening libraries. The number of natural 
products databases publicly available is 
increasing. These databases are being as-
sembled in several different countries and 
regions including Latin America and Asia. 
Molecular modeling is continuously applied 
to suggest binding models of bioactive na-
tural products with their molecular targets. 
This has been helpful to further understand, 
at the molecular level, the biological activity 
of these compounds and to guide the chemi-
cal synthesis of natural products analogues 
with improved activity. Virtual screening 
has been used to conduct the systematic 
search of bioactive natural products with 
a molecular target of interest. Conversely, 
target fishing approaches have also been 
employed to identify potential molecular 
targets of natural products. It is anticipa-
ted the continued synergy of experimental 
natural products research with compute- 
raided drug design to further advance drug 
discovery.
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